Salmon的全栈知识 Salmon的全栈知识
首页
  • JavaSE
  • JavaWeb
  • Spring生态
  • JUC
  • JVM
  • Netty
  • Java各版本特性
  • 23种设计模式
  • Maven
  • Java常用框架
  • Dubbo
  • OpenFeign
  • Nacos
  • Zookeeper
  • Sentinel
  • Seata
  • Gateway
  • Go基础
  • Gin
  • SQL数据库

    • MySQL
    • Oracle
  • NoSQL数据库

    • Redis
    • MongoDB
    • ElasticSearch
  • 消息中间件

    • RabbitMQ
    • RocketMQ
    • Kafka
    • ActiveMQ
    • MQTT
    • NATS
  • 网关中间件

    • Nginx
  • Linux
  • Docker
  • Git
  • K8s
  • Solidity
  • Java
  • 计算机网络
  • 操作系统
GitHub (opens new window)
首页
  • JavaSE
  • JavaWeb
  • Spring生态
  • JUC
  • JVM
  • Netty
  • Java各版本特性
  • 23种设计模式
  • Maven
  • Java常用框架
  • Dubbo
  • OpenFeign
  • Nacos
  • Zookeeper
  • Sentinel
  • Seata
  • Gateway
  • Go基础
  • Gin
  • SQL数据库

    • MySQL
    • Oracle
  • NoSQL数据库

    • Redis
    • MongoDB
    • ElasticSearch
  • 消息中间件

    • RabbitMQ
    • RocketMQ
    • Kafka
    • ActiveMQ
    • MQTT
    • NATS
  • 网关中间件

    • Nginx
  • Linux
  • Docker
  • Git
  • K8s
  • Solidity
  • Java
  • 计算机网络
  • 操作系统
GitHub (opens new window)
npm

(进入注册为作者充电)

  • 入门篇

    • 初识Redis
    • Redis常用命令
    • Redis的Java客户端
  • 实战篇

    • 短信登录
    • 商户查询缓存
    • 优惠卷秒杀
    • 分布式锁
    • 分布式锁-redission
    • 秒杀优化
    • Redis消息队列
    • 达人探店
    • 好友关注
    • 附近商户
    • 用户签到
    • UV统计
  • 高级篇

    • 分布式缓存

      • Redis持久化
      • Redis主从
      • Redis哨兵
      • Redis分片集群
    • 多级缓存

      • 什么是多级缓存
      • JVM进程缓存
      • Lua语法入门
      • 实现多级缓存
      • 缓存同步
        • 1. 数据同步策略
        • 2. 安装Canal
          • 2.1 认识Canal
          • 2.2 安装Canal
        • 3. 监听Canal
          • 3.1 引入依赖:
          • 3.2 编写配置:
          • 3.3 修改Item实体类
          • 3.4 编写监听器
    • Redis最佳实践

      • Redis键值设计
      • 批处理优化
      • 服务器端优化-持久化配置
      • 服务器端优化-慢查询优化
      • 服务器端优化-命令及安全配置
      • 服务器端优化-Redis内存划分和内存配置
      • 服务器端集群优化-集群还是主从
  • 原理篇

    • Redis数据结构
    • Redis网络模型
    • Redis通信协议-RESP协议
  • 《Redis》笔记
  • 高级篇
  • 多级缓存
Salmon
2024-03-13
目录

缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

# 1. 数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

**异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:

1)基于MQ的异步通知:

image-20210821115552327

解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新

依然有少量的代码侵入。

2)基于Canal的通知

image-20210821115719363

解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

代码零侵入

# 2. 安装Canal

# 2.1 认识Canal

Canal [kə'næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:

image-20210821115914748

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。

image-20210821115948395

# 2.2 安装Canal

安装和配置Canal参考课前资料文档:

image-20210821120017324

# 3. 监听Canal

Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。

image-20210821120049024

我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。

不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client

与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。

# 3.1 引入依赖:

<dependency>
    <groupId>top.javatool</groupId>
    <artifactId>canal-spring-boot-starter</artifactId>
    <version>1.2.1-RELEASE</version>
</dependency>

# 3.2 编写配置:

canal:
  destination: heima # canal的集群名字,要与安装canal时设置的名称一致
  server: 192.168.150.101:11111 # canal服务地址

# 3.3 修改Item实体类

通过@Id、@Column、等注解完成Item与数据库表字段的映射:

package com.heima.item.pojo;

import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.annotation.Transient;

import javax.persistence.Column;
import java.util.Date;

@Data
@TableName("tb_item")
public class Item {
    @TableId(type = IdType.AUTO)
    @Id
    private Long id;//商品id
    @Column(name = "name")
    private String name;//商品名称
    private String title;//商品标题
    private Long price;//价格(分)
    private String image;//商品图片
    private String category;//分类名称
    private String brand;//品牌名称
    private String spec;//规格
    private Integer status;//商品状态 1-正常,2-下架
    private Date createTime;//创建时间
    private Date updateTime;//更新时间
    @TableField(exist = false)
    @Transient
    private Integer stock;
    @TableField(exist = false)
    @Transient
    private Integer sold;
}

# 3.4 编写监听器

通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
package com.heima.item.canal;

import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;

@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {

    @Autowired
    private RedisHandler redisHandler;
    @Autowired
    private Cache<Long, Item> itemCache;

    @Override
    public void insert(Item item) {
        // 写数据到JVM进程缓存
        itemCache.put(item.getId(), item);
        // 写数据到redis
        redisHandler.saveItem(item);
    }

    @Override
    public void update(Item before, Item after) {
        // 写数据到JVM进程缓存
        itemCache.put(after.getId(), after);
        // 写数据到redis
        redisHandler.saveItem(after);
    }

    @Override
    public void delete(Item item) {
        // 删除数据到JVM进程缓存
        itemCache.invalidate(item.getId());
        // 删除数据到redis
        redisHandler.deleteItemById(item.getId());
    }
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    private static final ObjectMapper MAPPER = new ObjectMapper();

    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }

    public void saveItem(Item item) {
        try {
            String json = MAPPER.writeValueAsString(item);
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        } catch (JsonProcessingException e) {
            throw new RuntimeException(e);
        }
    }

    public void deleteItemById(Long id) {
        redisTemplate.delete("item:id:" + id);
    }
}
上次更新: 2025/03/09, 18:29:07
实现多级缓存
Redis键值设计

← 实现多级缓存 Redis键值设计→

Theme by Vdoing | Copyright © 2022-2025 Salmon's Blog
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式