Salmon的全栈知识 Salmon的全栈知识
首页
  • JavaSE
  • JavaWeb
  • Spring生态
  • JUC
  • JVM
  • Netty
  • Java各版本特性
  • 23种设计模式
  • Maven
  • Java常用框架
  • Dubbo
  • OpenFeign
  • Nacos
  • Zookeeper
  • Sentinel
  • Seata
  • Gateway
  • Go基础
  • Gin
  • SQL数据库

    • MySQL
    • Oracle
  • NoSQL数据库

    • Redis
    • MongoDB
    • ElasticSearch
  • 消息中间件

    • RabbitMQ
    • RocketMQ
    • Kafka
    • ActiveMQ
    • MQTT
    • NATS
  • 网关中间件

    • Nginx
  • Linux
  • Docker
  • Git
  • K8s
  • Solidity
  • Java
  • 计算机网络
  • 操作系统
GitHub (opens new window)
首页
  • JavaSE
  • JavaWeb
  • Spring生态
  • JUC
  • JVM
  • Netty
  • Java各版本特性
  • 23种设计模式
  • Maven
  • Java常用框架
  • Dubbo
  • OpenFeign
  • Nacos
  • Zookeeper
  • Sentinel
  • Seata
  • Gateway
  • Go基础
  • Gin
  • SQL数据库

    • MySQL
    • Oracle
  • NoSQL数据库

    • Redis
    • MongoDB
    • ElasticSearch
  • 消息中间件

    • RabbitMQ
    • RocketMQ
    • Kafka
    • ActiveMQ
    • MQTT
    • NATS
  • 网关中间件

    • Nginx
  • Linux
  • Docker
  • Git
  • K8s
  • Solidity
  • Java
  • 计算机网络
  • 操作系统
GitHub (opens new window)
npm

(进入注册为作者充电)

  • 入门篇

    • 初识Redis
    • Redis常用命令
    • Redis的Java客户端
  • 实战篇

    • 短信登录
    • 商户查询缓存
    • 优惠卷秒杀
    • 分布式锁
    • 分布式锁-redission
    • 秒杀优化
    • Redis消息队列
    • 达人探店
    • 好友关注
    • 附近商户
    • 用户签到
    • UV统计
  • 高级篇

    • 分布式缓存

      • Redis持久化
      • Redis主从
      • Redis哨兵
      • Redis分片集群
    • 多级缓存

      • 什么是多级缓存
      • JVM进程缓存
      • Lua语法入门
      • 实现多级缓存
      • 缓存同步
    • Redis最佳实践

      • Redis键值设计
        • 1. 优雅的key结构
        • 2. 拒绝BigKey
          • 2.1 BigKey的危害
          • 2.2 如何发现BigKey
          • ①redis-cli --bigkeys
          • ②scan扫描
          • ③第三方工具
          • ④网络监控
          • 2.3 如何删除BigKey
        • 3. 恰当的数据类型
          • 例1:比如存储一个User对象,我们有三种存储方式:
          • ①方式一:json字符串
          • ②方式二:字段打散
          • ③方式三:hash(推荐)
          • 例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?
          • 方案一
          • 方案二
        • 4. 总结
      • 批处理优化
      • 服务器端优化-持久化配置
      • 服务器端优化-慢查询优化
      • 服务器端优化-命令及安全配置
      • 服务器端优化-Redis内存划分和内存配置
      • 服务器端集群优化-集群还是主从
  • 原理篇

    • Redis数据结构
    • Redis网络模型
    • Redis通信协议-RESP协议
  • 《Redis》笔记
  • 高级篇
  • Redis最佳实践
Salmon
2024-03-13
目录

Redis键值设计

# 1. 优雅的key结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过44字节
  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:

image-20220521120213631

这样设计的好处:

  • 可读性强
  • 避免key冲突
  • 方便管理
  • 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为raw模式存储,在raw模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储SDS内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片

image-20220521122320482

# 2. 拒绝BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

那么如何判断元素的大小呢?redis也给我们提供了命令

image-20220521124650117

推荐值:

  • 单个key的value小于10KB
  • 对于集合类型的key,建议元素数量小于1000

# 2.1 BigKey的危害

  • 网络阻塞
    • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
  • 数据倾斜
    • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
  • Redis阻塞
    • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
  • CPU压力
    • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用

# 2.2 如何发现BigKey

# ①redis-cli --bigkeys

利用redis-cli提供的--bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key

命令:redis-cli -a 密码 --bigkeys

image-20220521133359507

# ②scan扫描

自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)

image-20220521133703245

scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101", 6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    final static int STR_MAX_LEN = 10 * 1024;
    final static int HASH_MAX_LEN = 500;

    @Test
    void testScan() {
        int maxLen = 0;
        long len = 0;

        String cursor = "0";
        do {
            // 扫描并获取一部分key
            ScanResult<String> result = jedis.scan(cursor);
            // 记录cursor
            cursor = result.getCursor();
            List<String> list = result.getResult();
            if (list == null || list.isEmpty()) {
                break;
            }
            // 遍历
            for (String key : list) {
                // 判断key的类型
                String type = jedis.type(key);
                switch (type) {
                    case "string":
                        len = jedis.strlen(key);
                        maxLen = STR_MAX_LEN;
                        break;
                    case "hash":
                        len = jedis.hlen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "list":
                        len = jedis.llen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "set":
                        len = jedis.scard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "zset":
                        len = jedis.zcard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    default:
                        break;
                }
                if (len >= maxLen) {
                    System.out.printf("Found big key : %s, type: %s, length or size: %d %n", key, type, len);
                }
            }
        } while (!cursor.equals("0"));
    }
    
    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }

}
# ③第三方工具
  • 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
  • https://github.com/sripathikrishnan/redis-rdb-tools
# ④网络监控
  • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
  • 一般阿里云搭建的云服务器就有相关监控页面

image-20220521140415785

# 2.3 如何删除BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

  • redis 3.0 及以下版本
    • 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey

image-20220521140621204

  • Redis 4.0以后
    • Redis在4.0后提供了异步删除的命令:unlink

# 3. 恰当的数据类型

# 例1:比如存储一个User对象,我们有三种存储方式:

# ①方式一:json字符串
user:1 {"name": "Jack", "age": 21}

优点:实现简单粗暴

缺点:数据耦合,不够灵活

# ②方式二:字段打散
user:1:name Jack
user:1:age 21

优点:可以灵活访问对象任意字段

缺点:占用空间大、没办法做统一控制

# ③方式三:hash(推荐)
user:1 name jack
age 21

优点:底层使用ziplist,空间占用小,可以灵活访问对象的任意字段

缺点:代码相对复杂

# 例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

key field value
someKey id:0 value0
..... .....
id:999999 value999999

存在的问题:

  • hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多
    • image-20220521142943350
  • 可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题
# 方案一

拆分为string类型

key value
id:0 value0
..... .....
id:999999 value999999

存在的问题:

  • string结构底层没有太多内存优化,内存占用较多

image-20220521143458010

  • 想要批量获取这些数据比较麻烦
# 方案二

拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash

key field value
key:0 id:00 value0
..... .....
id:99 value99
key:1 id:00 value100
..... .....
id:99 value199
....
key:9999 id:00 value999900
..... .....
id:99 value999999

image-20220521144339377

package com.heima.test;

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101", 6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    @Test
    void testSetBigKey() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 650; i++) {
            map.put("hello_" + i, "world!");
        }
        jedis.hmset("m2", map);
    }

    @Test
    void testBigHash() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 100000; i++) {
            map.put("key_" + i, "value_" + i);
        }
        jedis.hmset("test:big:hash", map);
    }

    @Test
    void testBigString() {
        for (int i = 1; i <= 100000; i++) {
            jedis.set("test:str:key_" + i, "value_" + i);
        }
    }

    @Test
    void testSmallHash() {
        int hashSize = 100;
        Map<String, String> map = new HashMap<>(hashSize);
        for (int i = 1; i <= 100000; i++) {
            int k = (i - 1) / hashSize;
            int v = i % hashSize;
            map.put("key_" + v, "value_" + v);
            if (v == 0) {
                jedis.hmset("test:small:hash_" + k, map);
            }
        }
    }

    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }
}

# 4. 总结

  • Key的最佳实践
    • 固定格式:[业务名]:[数据名]:[id]
    • 足够简短:不超过44字节
    • 不包含特殊字符
  • Value的最佳实践:
    • 合理的拆分数据,拒绝BigKey
    • 选择合适数据结构
    • Hash结构的entry数量不要超过1000
    • 设置合理的超时时间
上次更新: 2025/03/09, 18:29:07
缓存同步
批处理优化

← 缓存同步 批处理优化→

Theme by Vdoing | Copyright © 2022-2025 Salmon's Blog
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式